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Equations of motion are derived for long gravity waves in a straight uniform 
channel. The cross-section of the channel may be of any shape provided that it 
does not have gently sloping banks and it is not very wide compared with its 
depth. The equations may be reduced to those for two-dimensional motion such 
as occurs in a rectangular channel. The order of approximation in these equations 
is sufficient to give the solitary wave as a solution. 

1. Introduction 
The waves considered are irrotational gravity waves on the surface of water, 

travelling along a straight channel of uniform cross-section. The cross-section 
of the channel is assumed to have its breadth and depth of comparable size and 
the slope of its banks is assumed to be O( 1) or vertical. That is, very wide channels 
and channels with very gently sloping banks are excluded. Typical examples are 
channels with semi-circular or trapezoidal cross-sections. 

Scott Russell (1844) performed experiments with solitary waves in channels 
of various non-rectangular shapes, mostly triangular. He found that the wave 
was higher and shorter where the water was shallower. In  a channel of the form 
of a right-angled isosceles triangle, with the hypotenuse horizontal, the solitary 
waves maintained their unity of form. However, in a triangular channel with 
each side having a slope of one in four, although a single wave propagated, it 
broke at the edges. In a very broad channel the wave did not have a coherent 
form, but its various parts moved with a velocity appropriate to the local depth 
of water. 

The equation of motion for infinitesimal long waves in such channels had been 
given by Kelland (1839, see Lamb 1932, $169). Particular solutions for ‘short’ 
waves with infinitesimal amplitude in various triangular channels are summarized 
by Lamb (1932, $261). Peters (1966) has given the theory of the solitary wave in 
channels of arbitrary cross-section and has also included the effects of an initial 
vorticity distribution. Here, only irrotational flows are treated, but the equa- 
tions of motion for long waves such as the solitary wave are derived and it is 
shown how they may be transformed to the corresponding equations for two- 
dimensional motion in many cases, thus making the solutions of those equations 
applicable to more general channels. 

If a long wave of small amplitude travels along a channel, the motion of the 
water is almost entirely along the channel, the surface elevation is nearly uni- 

23 Fluid Mech. 32 



354 D.  H .  Peregrine 

form across the channel and the pressure is practically hydrostatic. The corres- 
ponding equation describing the flow is the one-dimensional wave equation, 
which has solutions which indicate that any wave may travel unchanged with 
constant velocity. However, this is often inadequate to describe the behaviour 
of quite small waves. For rectangular channels the appropriate next approxi- 
mation has been known for a considerable time (Boussinesq 1871). It is necessary 
to include both the second-order effects of the amplitude and the effect of the 
vertical acceleration of the water on the pressure in order to get a uniformly 
valid approximation. This approximation may be characterized by the solitary 
wave which is the only isolated wave to travel along a channel without change 
of form. Periodic solutions representing a train of waves were found by Korteweg 
& de Vries (1895), who also found a simpler form of the equations of motion 
when waves travel in one direction only. These are the only analytical solutions 
but numerical methods have been used to obtain unsteady solutions (e.g. 
Long 1964; Peregrine 1966). 

There are two ways to approach three-dimensional problems in shallow-water 
waves. One is to suppose that motions in all horizontal directions are of the same 
magnitude, with much smaller vertical velocities. This method has been used to 
obtain equations for waves on water of variable depth (Peregrine 1967). The 
other approach, which is used here, is to assume that velocities in one direction, 
along the channel in this case, are much larger than vertical or transverse 
velocities. This implies that the width of the channel may not be very much 
greater than its depth. In  the last section the case of a wide trapezoidal channel 
is discussed and it is shown that the approximation breaks down for very wide 
channels. 

2. Equations of motion: preliminaries 
Cartesian axes Oxyz are introduced with the origin in the undisturbed free 

surface, Ox directed along the channel, Oy across the channel and Oz vertical, 
as indicated in figure 1. The water in the channel is taken to be inviscid and 
incompressible, with no surface tension. The motion of the water is assumed to 
be irrotational initially so that it remains irrotational in the absence of breaking 
waves. 

The density p of the water, the acceleration g due to gravity, and a typical 
undisturbed depth h, of water, are used to introduce dimensionless variables as 
follows : 

(x, y> z, = (x*, y*7 z * ) / h O ,  = t * ( g / h O ) g ,  

fu, u, = = u*(gh,)-4 P = @* -p,)/pgh,, 

where * indicates a dimensional variable and p ,  is the atmospheric pressure above 
the water. The equations of motion in these variables are 

aU 
-+(u.v)u+vp+(o,o, at 1) = 0. (1)  

The continuity equation is 
v.u = 0, 
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which may also be written in an integrated form, 

aA aQ 
- + - - 0 ,  
at ax 

where A(x,  t )  is the cross-sectional area of the channel filled with water and 

(3) 

is the total flow along the channel at  any instant. The irrotational flow condition 
is v x u  = 0. ( 5 )  

FIGURE 1. Arrangement of co-ordinate axes. 

The free surface is taken to be z = <(x, y, t )  and the boundary conditions there 
are 

The boundary condition on the channel is that the normal velocity is zero. 
The above equations formulate the mathematical problem, but to make further 

progress it is necessary to make approximations which involve the properties 
of the waves under consideration. For shallow-water waves there are two 
relevant non-dimensional parameters. One, cr, = (depth of water)/(wavelength), 
so that a typical scale of variation with x is v-l, and, since long waves are being 
considered, r ~ <  1. The other parameter, E ,  is a measure of the amplitude of 
waves compared with the depth of water. That is, < = O(E). 

If 8 = 0(1) ,  approximate equations of motion may be found, which are 
exactly the same as for a rectangular channel with the same mean depth. But 
these finite-amplitude equations are not uniformly valid since they indicate 
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that the forward-facing slopes of waves grow steeper (see Stoker 1957), so that 
eventually the approximation cr < 1 no longer holds. For solitary wave theories 
it is necessary to  assume E < 1 and E - cr2 (Ursell 1953), so CT will be put equal to 
€3 in what follows. 

These assumptions are sufficient to fix the order of magnitude of all the other 
variables. All the dependent variables are now expanded as power series in E ,  

and the independent variables x and t are also scaled appropriately, 

x1 = E ~ X  and t, = d t .  

This has two aims, one to show explicitly the order of magnitude of each term, 
and the other to provide a systematic basis for finding higher approximations. 

Two variables, the pressure and cross-sectional area, are not small in the wave 
since they do not vanish when the water is undisturbed. Thus p and A are ex- 
panded in the form f,+ €f,+ €"fi +. . . . 

E f , + E Z f i +  .... 
The variables 5, u, Q are all O ( E )  and thus are expanded 

It is possible to have an initial flow u,, &, as in Peters's (1966) approach. The 
velocities v and w are O(&) and are expanded 

E+f ,  + E " f i  + . . . ) . 
When these new scaled variables have been substituted into the equations and 

boundary conditions it is possible to group terms of the same order of magnitude 
together. They are then separately put equal to zero in order to find:successively 
the terms in the expansion of the variables. 

Since the undisturbed condition is taken to be still water, the only equations 
O(1) are 

with the boundary conditionp, = 0 at z = 0. The solution is the hydrostatic one, 
p ,  = - z. The equation of order E )  from (3), aA,/at = 0, shows A ,  to be a function 
of z only. It is a constant for a uniform channel. 

3. Equations of motion: first approximation 
It is now convenient to introduce a two-dimensional vector operator, 

V, = (0, a/ay, a/&), and a two-dimensional velocity potential q5, (x,, y, x ,  t,) such 
that 

v -- "' and w1 =az. 
This is permissible since the equation O ( d )  in the irrotationality condition ( 5 )  is 

a@, 
l -  ay 

av, awl 
az ay * 

v,u, = 0, 

u1 = Ul(X1, tl). 

_ -  -- 

The other two equations in ( 5 )  give, to O(s) ,  

and hence 
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v,pl = 0. 
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The O(B)  terms in the y and z equations of motion give only 

The boundary condition for p at the free surface to O(E)  is that 

p ,  + ep, = 0 at x = sc,. 

Therefore p ,  = pl(xl, t,) = cl(xl, t,), and Q is independent of y. 
The x equation of motion has terms of O(E*), 

which may be rewritten 
3% ac, 
at, ax, 
-+- = 0. 

To the same order the continuity equation (3) is 

However, if B(z) is the breadth of the channel at height x ,  

A = A,+ B ( 2 ) d z  so' 
= A ,  + EC,B(O) + O(E2), 

so that A ,  = Bocl, where B, = B(0). From the definition of &, Q1 = A,U,, so 
that the continuity equation becomes 

ac1 au, 
at, *axl 

BO-+A - = 0. ( 7 )  

The elimination of u, from (6) and (7) gives 

__ a2c1 = A0 -~ a2c1 . 
at; B, ax; 

that is, the wave equation with a wave velocity, c,, such that 

cg = A,/B, = mean depth of channel. 

The transverse velocity potential q5, may now be found from the O(&) terms of 
the continuity equation (2), and the kinematic boundary conditions. The equa- 
tion is 

~ + v : $ 5 ,  = 0, 
8x1 

and the boundary conditions are aq5,/an = 0 on solid boundaries, and 

t o  this approximation. This last boundary condition may be rewritten as 
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by using (7).  This suggests the assumption 

a$ V t $  = 1, with - = 0 on solid boundaries 
an 

a$ 
ax 

and -=I$ on z = O .  

This is a well-posed Neumann problem for $; its solution for 
unique within an arbitrary constant. Thus the solution for #1 is 

(8) 

$ exists and is 

where x is arbitrary and is not of interest in this approximation since it does not 
affect v1 or wl. 

4. Equations of motion: second approximation 
It is at the second approximation that variations of 1: and u across the channel 

appear. In  two-dimensional flow the vertical acceleration of the water becomes 
significant : here the transverse acceleration is as important. Their effects appear 
through the terms of O(s2) in the y and z equations of motion which give 

a 
; j tV,#lfVlPZ = Q .  

This equation integrates to 
a2ul 

P2 = Wl $k? ‘1 +H(xl ,  t l ) 7  

where H is an arbitrary function related to  c2 by the boundary condition on the 
pressure which reduces to 

- g 2 + p 2  = 0 on z = 0. 

That is 

This equation shows that the transverse variation of (cz is like $(y7 0). H(xl ,  t l )  
incorporates the function +(xl, tl) in (9). 

The O(s2) terms in the y and x components of (5) give 

azu, 

8x1 
so that u2 = - 7 $(y, f u(xl> t l ) 7  

where U is another arbitrary function. 
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The O(e2) terms in the x equation of motion are 

au, au, ap 
-+u -+-2 = 0) 
at, lax, ax, 

and thus become 
au au aH 
-+u '+- = 0. 
at, lax, ax, 

The next approximation to the cross-sectional area is a little more complicated: 

where B, = B'(O), and 

If the waterline of a channel is very gently sloping, B'(0) is large and the term 
B,C2 may no longer be considered as a second-order term. This theory is there- 
fore only applicable to channels for which B'(0) is O(1). 

The calculation for Q is similar to that for A and yields 

where 

Expressions (12) and (14) give A,  and Q,, which may then be substituted into the 
O(s%) terms from equation (3) to give a second equation for U and H .  

However, while this approach is reasonably straightforward for finding 
approximations to the equations of motion, it is not so convenient for finding 
solutions of the equations. For example, if u and < are given as functions of x 
at t = 0, we can put u1 and Cl equal to the corresponding scaled functions at 
t ,  = 0 and then solve equations (6) and (7) to find u1 and t;, at later times. These 
can then be used in the second-order equations to give U and H and hence y ,  and 
c,. In  general, however, such a procedure leads to functions U and H varying 
directly with t, and hence to solutions which are likely to be valid only for 
t ,  = O(1). A more profitable approach for finding solutions is to use equations 
which are correct to second order initially; then, this problem does not appear 
to  occur. Although in the two-dimensional case the only known analytical solu- 
tions are steady translational waves, numerical solutions give reasonable results 
with unsteady motions for relatively large times (Peregrine 1966). 

The first- and second-order equations can be combined by using variables 
correct to the second order. For example, for the height of the water surface, 

r(x, t )  = .Cl(% tl) + @H(x,, $1) (16) 
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is an obvious choice. The choice is not so clear for a velocity variable. One can 
use 

(17) 

(18) 

The resulting equations differ in the second-order terms, but these terms can 
be changed by using the first-order relationships and the equations are equivalent. 
(For example, in equation (18) a2u,/ax: may be replaced by (l/cg) a2u,/at:.) 

The momentum equation is obtained by adding 6 times equation (6) to €2 

times equation (11). The dependent variables are changed to 7 and d, and at  the 
same time x ,  and t ,  are replaced by x and t in order to remove all e, giving 

u’ (x ,  t )  = %(Xl, t l )  + S2U(X,, tJ, 

T i ( ~ , t )  = &/A = E U 1 + € 2  u-$A3$). a2u or ( 

auf auf ar 
at ax ax - + ? A f - - + -  = 0. 

Similarly from the continuity equation, after dividing by B,, 

where b = B,/B, = B’(O)/B(O). This equation may be rewritten 

where only the difference $B- $A, which is unique, appears, instead of $A or 
$B, which may have arbitrary constants added. 

5. Transformation to the equations for a rectangular channel 
For a rectangular channel of non-dimensional depth h, b = 0,  ci = h and 

$ = &2+ hz, so that $B - $A = ih2. Thus for any channel with sides which 
are vertical at  the waterline, so that b = 0 ,  the equations (19) and (21) can be 
transformed to those for a rectangular channel of the same mean depth by 
introducing x f  = [3(@B- + A ) ] - h ; x  

and t’ = [3($B-$A)]-’Cit. 

If b + 0 a transformation is still possible if attention is restricted to waves 
travelling in one direction only. In  this case, corresponding to the simplification 
of Korteweg & de Vries (1895), the equations (19) and (21) may be reduced to 

with 7 = c,u’+O(e2).  

This equation is derived in an appendix. The transformation to the corresponding 
form for a rectangular channel of the same mean depth involves only the above 
change to x’ and t’ and a new velocity variable, 

U” = (1 -+bci)u’.  (23) 
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6. Discussion 
The transformation from x and t to x’ and t’ is only a slight change in the time 

and length scales, and since they are both changed by the same amount the 
velocity of waves in a channel with h = 0 is the same as in a rectangular channel. 
For example, a solitary wave of amplitude a* in a rectangular channel of depth 
h* has a velocity (gh*)i (1 + a*/2h*), which in non-dimensional terms is 
co( 1 + a/2cg). This expression is thus the velocity of a solitary wave in any channel 
for which b = 0. 

U 
FIGURE 2. Cross-sections with bc: > 3. 

On the other hand, if b 4 0, the transformation (23) implies a velocity 

co[l + ( 1 - +bc;) a/2$] (24) 

for a solitary wave with non-dimensional amplitude a. It is of interest to note 
that this velocity does not depend on the function II. but solely on the geometry 
of the channel. Although it is presented in a different form this is the same as the 
result found by Peters (1966). It is not necessary to use these transformations 
since the solitary wave solution may be found directly from (22 )  or (19) and (21). 
It is 

(X-ct). 

It will be noticed that, if bcg = 3, equation (22) is linear and there is no solitary 
wave solution; while if hc; > 3 then the solitary wave is below the mean surface 
instead of the usual positive wave. The condition hc; > 3 may be written 

and is a purely geometrical one. A relatively large area is required relative to the 
breadth. Two cross-sections satisfying this condition are shown in figure 2, 
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Although they are rather unusual it seems possible that a negative solitary wave 
could be generated in such a channel. However, it might be more difficult to 
identify than the usual positive wave, since, while the positive wave travels 
faster than any wave of smaller amplitude, the negative wave would travel 
slower than smaller long waves, but shorter waves also travel slower than long 
waves, so the two may be confused. 

_ _ _ _ _ _ _ - - - - - - - _ - - - - - - - -  

FIGURE 3. Solitary wave in a triangular channel, with the sides of the channel at 60" to 
the vertical and the amplitude of the wave at  the centre equal to one third of the mean depth. 
(a )  Side view : the higher and steeper line is the profile a t  the side of the channel, the other 
line is the profile a t  the centre. ( b )  View along the channel. 

The transverse velocities and transverse variation of crest height are obtained 
from the function ~ ( y , z ) .  There are are only a few cases for which it may be 
evaluated explicitly. It has already been given for a rectangle, and Peters 
(1966) gives an expression for its value in a semi-circle. There is a particularly 
simple solution for a triangle; if the origin is transferred to the bottom corner 
of the triangle, the upper edge being the free surface, then 

ff = $(y"zZ). 

It is easy to see that this implies that all motion takes place in planes passing 
through the bottom corner of the triangle. Figure 3 shows the appearance of a 
solitary wave in a triangular channel according to this theory. 

7. Wide channels 
In  a very wide channel of rectangular cross-section it is possible to have a 

solitary wave travelling along the channel with its crest-line perpendicular to 
the sides of the channel. It is reasonable to suppose that, if one side of the channel 
is not vertical, but slopes at some angle to the vertical, it  may be possible for a 
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Consider the cross-section in figure 4, where AD = 1,  DC = L B 1, and CB 
is a t  an angle a to the vertical. The boundary conditions on $ are that 

,, 

- - 

a$ L+ 4 tan a 
* = O  onADCB and - =  on AB. 
an az L + t a n a  

The boundary conditions on BADC and the equation V:$ = 1 are satisfied by 

t tan a L + 4~ t ana  
$0 = L + tan a’’ + 2 ( ~ +  tan a)Z2’ 

so that, if $ = $o + $,, then $, is a harmonic function with a$,/an = 0 on 
BADC and a$, ( z  - 3)L sin a 

an L f t a n a  
- on CB. 

The variation in crest height across the channel is given by $(y,  1). For large 
L, $, will contribute O( 1 )  near B but will diminish exponentially away from B. 
$o, however, changes by O(L) between A and B. This indicates a large change in 
amplitude across the wave, and, since variation across the wave is assumed to 
be small in the theory, it shows that this theory is not applicable to very wide 
channels. It is likely that in practice even waves of very small amplitude will 
break at the shore of wide channels, or channels with gently shelving edges. 

Appendix. Derivation of equation (22) 
In  equations (19) and (21) put 

c2 = c;+q ,  

and divide (21) by c .  The sum and difference of the resulting equations may be 
written 
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Now, reintroduce x1 and t, and put 

c = co+ECl+E2cz+ ... 
and u' = €U,+€2UZ+ ... 
in these equations. The first-order terms are 

The solution corresponding to waves travelling in the +z direction only is 

and 

Hence, 

u, + 2c, = f(x, - cot,) 

u1 - 2c, = 0. 

7 = €cou,+O(s2). 

When this solution is used to eliminate c,, the second-order equations obtained 
from (A 1) and (A 2 )  are 

Equation (A 3) can be rewritten 

Operate on this equation with .. 

and then substitute for 

from (A 4) to find 
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where further use has been made of (A 6). If the waves are travelling into still 
water f(xl + cotl) is zero, and in other cases it is zero if the initial conditions are 
appropriate. 

Equation (22)  is now obtained by adding E times (A 6) to e2 times (A 7) and 
putting u' = eul + e2u2 so that 
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